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Abstract. We consider how the problem of determining normal forms for a specific

class of nonholonomic systems leads to various interesting and concrete bridges between
two apparently unrelated themes. Various ideas that traditionally pertain to the field

of algebraic geometry emerge here organically in an attempt to elucidate the geomet-

ric structures underlying a large class of nonholonomic distributions known as Goursat
constraints. Among our new results is a regularization theorem for curves stated and

proved using tools exclusively from nonholonomic geometry, and a computation of topo-

logical invariants that answer a question on the global topology of our classifying space.
Last but not least we present for the first time some experimental results connecting the

discrete invariants of nonholonomic plane fields such as the RVT code and the Milnor

number of complex plane algebraic curves.

1. Introduction. One of the simplest idealized constraints one considers in nonholonomic
mechanics is the skate or no-slip condition:

− sin(θ)dx+ cos(θ)dy = 0. (1)

where (x, y) are cartesian coordinates in the plane and v̂ = (cos(θ), sin(θ)) is the steering
direction of the car – point along its axle. Stated plainly, the no-slip condition states that
the wheels of the car are only allowed to roll along the road and, hence, no slipping occurs
in the direction normal to the linear velocity of the car. Another closely related constraint
is that which an airport luggage cart is subject to (Figure 1). In differential geometry such
differential constraint is an example of a nonholonomic constraint, and it is well known
that it does not possess integrable surfaces, i.e., it fails to satisfy the Frobenius condition of
integrability ([1], Appendix 3).

We now present to the reader a series of mathematical miracles related to the contact
distribution above, and her close relatives the so-called Goursat distributions.

To begin, consider the projectivization of TR2 which we will denote by S(1). We denote
R2 by S(0). It is a simple exercise to show that S(1) is diffeomorphic to R2 × S1. The
projectivization lifts various objects canonically defined in R2, including the tautological
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Figure 1. The car with trailers attached. The rate of change in the steer-
ing direction is denoted by ω2.
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2-plane field, morphisms and curves. In Figure 2 we schematize the way various objects are
lifted from S(0) to S(k).

We can coordinatize S(1) by using projective coordinates on R2: (x, y, [dx : dy]) where
the third entry represents the projective coordinates of a vector in R2. Let π : S(1)→ S(0)
denote the canonical projection of the bundle just defined. Fix x ∈ S(0) and consider a line
l ⊂ TxS(0). Then the plane field

∆1(x, [l])
.
= Dπ−1(l).

The line l has implicit representation in the plane given by − sin(θ)dx + cos(θ)dy = 0.
In local coordinates [dx : dy] ∼= tan(θ) and the inverse image in S(1) of this line under the

tangent map Dπ is the plane spanned by the vectors
{
∂
∂θ , cos(θ) ∂

∂x + sin(θ) ∂∂y

}
. We have

thus obtained the contact plane field (a.k.a skate constraint) from a geometric procedure
known as Cartan prolongation. This operation can be iterated, and at each step we
projectivize the plane field obtained in the previous step and the output is a tower of fiber
bundles known as the Semple Tower ([8]):

· · · → S(n)→ S(n− 1)→ · · · → S(2)→ S(1)→ S(0).

The Semple Tower has been rediscovered as the Monster Tower ([15],[16]). One can assign
to each point a word in the letters R,V, and T, known as an RVT code, which is an invariant
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for the diffeomorphism group action. Each consecutive level S(k) is endowed with a plane
field ∆k which is a Goursat Flag and a geometric model for the configuration space of a
airport luggage convoy ([18], [15]). Some of these distributions had already been named
within the literature of differential geometry; see [9].

One can generalize this construction to obtain a similar tower starting with a d-dimension-
al base manifold, but at each step one obtains a tower of fiber bundles with fibers isomorphic
to RP d−1 (or Sd−1 if orientation needs to be taken in into account). Each level of this tower
will be also denoted by S(k) without explicit mention to the base manifold. A word of
caution here:

dim(S(k)) = d+ (d− 1)k,

where d is the dimension of the base manifold. Correspondingly, each S(n) is equipped with
a d-dimensional plane field.

This tower can be thought of as the configuration space of a mechanical articulated
arm [19]. There is also a mechanical resemblance between the articulated arm system just
mentioned and the robotic snake model of Hausmann and Rodriguez [10], though we have
to fix the position of the snake’s tail. A simple geometric computation points out that for
when the snake is completely stretched out the rank drops and it is not clear what the
generic local behavior of this nonholonomic constraint is. Is this a Goursat distribution? Or
a product constraint? By product constraint, we mean a plane field which contains factors as
a product of a nonholonomic factor and trivial flat factor: ∆×Rk. See section 5.3 of ([15]).
Hausmann and Rodriguez determined the reachable sets for certain generic configurations
of the snake, but have not discussed in detail the nature of the nonholonomic distributions
([10]) .

The multi-flags distributions will be one of the protagonists of our note, and by a theorem
by Y. Shibuya and K. Yamaguchi ([21]) these generalized towers realize all of the so-called
Goursat multi-flags.

Our take home message to the reader is that serendipity is abundant when it
comes to Goursat flags and multi-flags.

2. Bridge 1: Nonholonomic geometry and curve singularities. A first mathematical
miracle in the study of Goursat flags or multi-flags is their connection with the singularity
theory of smooth of analytic maps [2]. The fundamental notion underlying this connection
is the Cartan prolongation already alluded to in the introduction. From the point of view
of normal form theory, there is an action of the pseudogroup of local diffeomorphisms at
the base S(0). Different orbits will correspond to different normal forms. Given a point
p ∈ S(k) one associates to it Γ(p) which is the set of all smooth curves through p that
admit a nontrivial projection back to the base S(0). It can be argued that p ∼ q (∼ means
equivalent under the group action) implies Γ(p) ∼ Γ(q). By symmetry, we fix the base
point to be the origin and one can act on the fiber π−1

k (0), πk being the canonical projection
S(k) 7→ S(0). On this set of curves we act with the diffeomorphism group and using standard
techniques of singularity theory of curves, different curve orbits (normal forms) will give rise
to different normal forms of plane fields. The first successful step taken in this direction was
documented in [16].

The task of labeling the orbits is sequential and it works by stages. In [5] we described
in detail the general tools for this task for the Semple Tower with base S(0) = R3, though
the construction and tools work for general base manifolds. There are two main approaches
for determining the orbits:

1. the curve approach, and
2. the isotropy method.

Both methods are rather elementary and perform well in lower dimensions, depending mostly
on the combinatorial or projective geometry of the problem at hand. Limitations to both
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methods are mostly computational in nature, since the amount of bookkeeping grows ex-
ponentially as one goes up the tower. Either approach is suitable to computer algebraic
systems as pointed out in ([5]).

2.1. Glimpses of algebraic geometry: Nash and Enriques. Many features from clas-
sic algebraic geometry are easily transported to the Semple Tower if one thinks in terms of
Nash blow-ups instead of quadratic transformations. For a modern reference on the subject
see [13].

Cartan prolongations coincide with Nash blow-ups in the analytic category as explained
in [3] and permitted us to make a case for the analogies between the problems in normal form
theory for Goursat flags and some corresponding problems in enumerative geometry ([8]).
A technical but rather important result in the classification problem of Goursat multi-flags
consists of the following:

Theorem 2.1 ([3], Appendix B). Any well parametrized curve germ c : I → S(0) that is
singular (i.e., c′(0) = 0) becomes regular (i.e. smooth and touching only regular points) after
a finite number of Cartan prolongations.

This theorem is crucial in defining the RVT code of a point in S(k) in terms of Cartan
prolongations of curves in the base S(0). Let us use the notation c(k) for the k-th iteration of
the Nash blow-up of a curve c(t). Consider the list of points {c(k)(0)} obtained by evaluating
the consecutive prolongations at t = 0. The proof consists of first showing that the set of
points c(k)(0) ∈ S(k) contains only a finite number of critical points, and once we surpass
the last critical point the curve become necessarily smooth. Otherwise it would have to be
ill-parametrized. This is equivalent to the desingularization theorem stated in [13] but now
formulated and proved using the language and tools of nonholonomic geometry.

As a corollary of the regularization theorem we obtain a nonholonomic version of the clas-
sical Enriques theorem about multiplicities of consecutive prolongations of a well-parametr-
ized curve, though originally it was worded in terms of quadratic transformations and prox-
imity relations. By multiplicity of a singularity we mean the first non-zero jet (if we mod out
constants due to a specific choice of chart). This definition is suitable to parametrized curves
and is independent of the coordinate chart by di Bruno’s formula. We will exchangeably use
the term multiplicity for either points or curves. Using special charts known as extended
Kumpera-Ruiz coordinates (see [7]), the nested structure of Semple Towers (submanifolds
of the original base manifold generate subtowers), and the regularization theorem above, we
can prove the following:

Definition 2.2 ([3], Appendix B). Let p ∈ S(k). If a point q satisfies

• q is in the fiber above p, or
• q can be be reached by a prolongation of a vertical curve curve through p,

then we say that p and q are adjacent points. Points which are connected this way will form
a graph (in fact, a tree) with seed p. The adjacency condition will be denoted by q → p.

There is a simple relation between multiplies of adjacent points:

Theorem 2.3. One has

mult(p) =
∑
q→p

mult(q).

This a classic result in enumerative geometry attributed to F. Enriques, and in our
context it restricts the class of singular points that be reached from a given point via Cartan
prolongation. The proof is again based purely on the local geometry of the nonholonomic
fields in the Semple tower.
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2.2. Puiseux numbers and growth vectors. In [20], we gave a formula for the Puiseux
characteristic of an analytic plane curve germ which represents a Goursat distribution germ
with prescribed small growth vector.

Given a Goursat distribution D on a manifold M , consider the sequence Di = [D,Di−1]+
Di−1, where D0 = D. Then there exists an r such that Dr = TM . For each p ∈ M , we
define the small growth vector at p to be the integer valued vector

sgv(p) =
(
dimD0(p), dimD1(p), . . . , dimDr(p) = n

)
.

The derived vector of a Goursat germ consists of the multiplicities of the entries in the
small growth vector. For a Goursat distribution, the dimensions of the sequence Di grow
by at most one at a time, so the multiplicities are nonzero and from the list of multiplicities
we may recover the original small growth vector.

For a well-parametrized, non-immersed plane curve

γ(t) = (tm,
∑
k≥m

akt
k)

the Puiseux characteristic is defined as follows. Let λ0 = e0 = m. Then define inductively

λj+1 = min{k | ak 6= 0, ej - k}, ej+1 = gcd(ej , λj+1)

until we first obtain a g with eg = 1. Then the vector [λ0;λ1, . . . , λg] is called the Puiseux
characteristic of γ. The Puiseux characteristic is the fundamental invariant in the singularity
theory of plane curves. In [23], Proposition 4.3.8 shows that it is equivalent to at least seven
other classical invariants.

In short, [20] provided the dashed arrow in the following diagram:

{SGV } {RV T}

{PC}

Here, PC represents the Puisuex characteristic of a plane curve, RVT represents the
RVT code of a point in the Monster Tower, and SGV represents the small growth vector
of a Goursat germ. The arrow {RVT} −→ {SGV} was given in [11], the arrow {RVT} ←→
{PC} was given in [16], and the arrow {SGV} −→ {RVT} was given in [17].

Now suppose we are given a Goursat germ whose derived vector is

der = (M1, M1, . . . ,M1︸ ︷︷ ︸
m1

, M2, M2, . . . ,M2︸ ︷︷ ︸
m2

, . . . ,Mv+1, Mv+1, . . . ,Mv+1︸ ︷︷ ︸
mv+1

),

with M1 < M2 < · · · < Mv < Mv+1. Consider the set S = {Mi| Mi−1 divides Mi}. Let
g = |S|. For 1 ≤ j ≤ g, let N1, N2, . . . , Ng denote the elements of S in decreasing order. We
always have Ng = M2, since M1 = 1. For 1 ≤ j ≤ g let Mkj = Nj .

Theorem 2.4 ([20]). The corresponding Puiseux characteristic is [λ0;λ1, . . . , λg] where

λ0 = Mv+1

λj =
∑
i≥kj

miMi +Mkj +Mkj−1

for 1 ≤ j ≤ g.
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Example 1. Suppose der = (1, 1, 2, 2, 2, 2, 2, 2, 4, 6, 6, 6, 18, 24, 24). Note that λ0 = Mv+1 =
M6 = 24. We also have S = {18, 4, 2}, and therefore g = 3. Then write S = {18, 4, 2} =
{N1, N2, N3} = {M5,M3,M2} so that k1 = 5, k2 = 3, and k3 = 2. Finally, we compute

λ1 =
∑
i≥5

miMi +M5 +M4 = 90

λ2 =
∑
i≥3

miMi +M3 +M2 = 94

λ3 =
∑
i≥2

miMi +M2 +M1 = 103.

The Puiseux characteristic is thus [24; 90, 94, 103].

2.3. Spelling rules. The RV T code was first studied for the R2-Semple Tower and is a
word in the letters R, V , and T subject to a simple set of spelling rules ([16]). The spelling
rules come from the number of critical directions that appear in the rank 2 distribution that
exist above each point in the planar tower. In [5], Montgomery, Howard and Castro began
studying the R3-Semple Tower and extended the alphabet for the RV T coding system to
include the letters Ti for i = 1, 2 and Lj for j = 1, 2, 3 which come from the critical planes
that exist within the rank 3 distributions at each level of the R3-Semple Tower. The first
spelling rules were obtained in [7], [4], and in [6] we investigated the behavior of these critical
planes and completed the spelling rules. These spelling rules for the spatial tower are given
by the following result, where the “:” denotes which letters can be placed after a given letter.
For example, given the letter R one can put either the letters R or V after it.

Theorem 2.5. [6] The complete spelling rules for any RV T code in the R3-Semple Tower
are as follows:
(1) Any RV T code string must begin with the letter R.
(2) R : R and V .
(3) V and T (= T1) : R, V , T , and L.
(4) L(= L1) and Lj for j = 2, 3: R, V , Ti for i = 1, 2, and Lj for j = 1, 2, 3.
(5) T2 : R, V, T2, and L3.

The significance of this result is the role it plays in the classification problem of the points
within the spatial tower. In [7] we used a technique called the isotropy method which allows
us to classify points at any level of the spatial tower so long as we know how to describe the
RV T -classes in Kumpera-Ruiz coordinates.

Theorem 2.6 ([4]). In the spatial Semple Tower the number of orbits within each of the
first four levels of the tower are as follows:
• Level 1 has 1 orbit,
• Level 2 has 2 orbits,
• Level 3 has 7 orbits,
• Level 4 has 34 orbits.

3. Bridge 2: Nonholonomic geometry and algebraic topology.

3.1. Semple meets Chern: Nontrivality of the C2-Semple Tower. Some interesting
algebraic topological questions arise when one starts to consider the complexified version of
the Semple Tower. If we replace S(0) by C2, the fibers over the origin cease to be a trivial
Cartesian product as the following computation with cohomology classes show.

We will show, for a base consisting of a neighborhood U of the origin in C2 that the nth
level of the Semple Tower is not the product manifold U × (CP 1)n = U ×CP 1× · · · ×CP 1.
We can show this by using the Borel-Hirzebruch formula, found in [12], in order to compute
the cohomology of the C2-Semple Tower.
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Let ξ be a rank n complex vector bundle over a topological space X, and let P(ξ) denote
its projectivization. Then the Borel-Hirzebruch formula is given by

H∗(P(ξ);Z) ' H∗(X;Z)[x] / < xn +

n∑
i=1

(−1)ici(π
∗ξ)xn−i) >,

where π∗ξ is the pullback of ξ along π : P(ξ) → X and ci(π
∗ξ) if the ith Chern class of

π∗ξ. Here, x can be viewed as the first Chern class of the canonical line bundle over P(ξ).
One can also replace ci(π

∗ξ) with ci(ξ) since the induced homomorphism π∗ : H∗(X;Z)→
H∗(P(ξ);Z) is injective. We can apply the Borel-Hirzebruch formula to an n-level CP -tower

S(m)
πm−→ S(m− 1)

πm−1−→ · · · π2−→ S(1)
π1−→ S(0) = {a point},

with S(i) = P(ξi−1), to get the isomorphism

H∗(S(m);Z) ' Z[x1, · · · , xm]/ < xnk

k +

nk∑
i=1

(−1)ici(ξk−1)xnk−i
k | k = 1, · · · ,m >

Theorem 3.1. For n ≥ 2, the nth level of the C2-Semple Tower is a nontrivial bundle and
the cohomology at each level of the tower is of the form H∗(S(n);Z) ' Z[x1, · · · , xn]/ <
x2

1, x
2
k − c1(∆k−1)xk | k = 2, · · · , n >.

Proof. The first level of the Semple Tower is a trivial bundle given by S(1) = U × CP 1

with U being a contractible open subset of the origin in C2. Our rank 2 distribution over
S(1) is ∆(p,`) = dπ−1

(p,`)(`) for p ∈ U and ` ⊂ TpC2. We use the approach given in [14] to

determine the first and second Chern classes for ∆1. We note that there is a nonvanishing
section s : S(1) → ∆1 given by (p, `) 7→ `, since ` is never zero and hence tells us that the
second Chern class of ∆1 will vanish. Let ∆0

1 be the rank 1 subdistribution of ∆1 defined by
∆0

1(p, `) = ∆1(p, `)/span{`} which will be the tangent space to CP 1. It is well know that
TCP 1 has nontrivial first Chern class. This implies c2(∆1) = 0 and c1(∆1) 6= 0, and since
S(2) = P(∆1) we end up with H∗(S(2);Z) ' Z[x1, x2]/ < x2

1, x
2
2 − c1(∆1)x2 >. One can

see that we can apply the same reasoning as above to show c2(∆i) = 0 and c1(∆i) 6= 0 for
i ≥ 2 and that H∗(S(n);Z) ' Z[x1, · · · , xn]/ < x2

1, x
2
i − c1(∆i−1)xi | i = 2, · · · , n >.

The main open question here is: Can one realize these cohomology classes as singularity
classes within the Semple Tower? R. Thom, who to our knowledge, was the first to propose
this sort of program in algebraic topology ([22]). Whether this realization has direct appli-
cations in controllability or stabilization questions of the underlying control system remains
elusive to us.

3.2. Semple meets Milnor. A parallel definition of the RVT codes for Goursat germs was
proposed in [16] using the Semple Tower. This tower is Goursat universal: every Goursat
germ occurs somewhere within the tower. Each point in the Semple Tower is assigned an
RVT code, and the code of a Goursat germ at a reference point p is that of p itself. See [16]
for details, or Section 2.2 of [20] for a summary.

In [16], a correspondence between points in the Semple Tower and plane curve germs was
made explicit. Singular curves correspond to points whose RVT code ends with the letter V
or T. The Milnor number is a fundamental invariant of such curve singularities. Our current
work seeks to compute the Milnor number µ from a given RVT code, and we present some
preliminary results below, after recalling the definition of µ.

Suppose C is the germ at O of the singular plane curve defined by f(x, y) = 0. Let Bε
denote the disk of radius ε centered at the origin in C2, with boundary sphere Sε.
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Definition 3.2. Let K = f−1(0) ∩ Sε. Then for sufficiently small ε, the map

φ : Sε −K → S1

z 7→ f(z)/|f(z)|

is a fibration, known as the Milnor fibration.

The fiber F , known as the Milnor fiber, is a compact, connected, oriented surface with r
boundary components, where the curve C has r branches. The first Betti number of F is
the Milnor number of the singularity, denoted µ.

The two formulas below are conjectured to give the Milnor number for a prescribed RVT
code. The first formula (*) concerns a single block of the form RsV kTu where the parameters
s, k, and u are arbitrary non-negative integers. Any RVT code consists of a sequence of
such blocks. Here the superscripts denote multiplicities of letters. The second formula (**)
concerns RVT codes which consist of strings of the form RsjV Tuj , where the parameters
sj and uj are positive integers. Proofs of these formulas will appear in a forthcoming
paper of Howard and Shanbrom. Here F (k) denotes the kth Fibonacci number, where
F (1) = F (2) = 1. Also, we consider µ/2 instead of the Milnor number µ for convenience,

and

(
k
2

)
denotes k choose 2.

Basic building block:

µ

2
(RsV kTu) =

(
F (k + 2)

2

)
(2 + 2u)−

(
F (k + 1)

2

)
u+

(
F (k + 2) + F (k)u

2

)
(s− 2)

+ F (k)F (k + 2)
u(u+ 1)

2
+

k−1∑
j=1

(
F (j + 2)

2

)
.

(*)

For example, µ(R3V 5T 2) = 1804.
Iterative process for single V ’s:

µ

2
(Rs1V Tu1Rs2V Tu2 · · ·RsnV Tun) =

(
(u1 + 2) · · · (un + 2)

2

)
s1

+

(
(u2 + 2) · · · (un + 2)

2

)
(s2 + u1 + 1) + . . .

+

(
(uj + 2) · · · (un + 2)

2

)
(sj + uj−1 + 1) + . . .

+

(
(un + 2)

2

)
(sn + un−1 + 1).

(**)

For example, µ(R2V T 2R3V TRV T 3) = 8400.
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